3.6.44 \(\int \frac {a+b \sin (c+d x)}{(e \cos (c+d x))^{3/2}} \, dx\) [544]

Optimal. Leaf size=91 \[ \frac {2 b}{d e \sqrt {e \cos (c+d x)}}-\frac {2 a \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d e^2 \sqrt {\cos (c+d x)}}+\frac {2 a \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}} \]

[Out]

2*b/d/e/(e*cos(d*x+c))^(1/2)+2*a*sin(d*x+c)/d/e/(e*cos(d*x+c))^(1/2)-2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*
d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(e*cos(d*x+c))^(1/2)/d/e^2/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2748, 2716, 2721, 2719} \begin {gather*} -\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{d e^2 \sqrt {\cos (c+d x)}}+\frac {2 a \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}+\frac {2 b}{d e \sqrt {e \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sin[c + d*x])/(e*Cos[c + d*x])^(3/2),x]

[Out]

(2*b)/(d*e*Sqrt[e*Cos[c + d*x]]) - (2*a*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(d*e^2*Sqrt[Cos[c + d*
x]]) + (2*a*Sin[c + d*x])/(d*e*Sqrt[e*Cos[c + d*x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2748

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-b)*((g*Co
s[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x
] && (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rubi steps

\begin {align*} \int \frac {a+b \sin (c+d x)}{(e \cos (c+d x))^{3/2}} \, dx &=\frac {2 b}{d e \sqrt {e \cos (c+d x)}}+a \int \frac {1}{(e \cos (c+d x))^{3/2}} \, dx\\ &=\frac {2 b}{d e \sqrt {e \cos (c+d x)}}+\frac {2 a \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}-\frac {a \int \sqrt {e \cos (c+d x)} \, dx}{e^2}\\ &=\frac {2 b}{d e \sqrt {e \cos (c+d x)}}+\frac {2 a \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}-\frac {\left (a \sqrt {e \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{e^2 \sqrt {\cos (c+d x)}}\\ &=\frac {2 b}{d e \sqrt {e \cos (c+d x)}}-\frac {2 a \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d e^2 \sqrt {\cos (c+d x)}}+\frac {2 a \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 54, normalized size = 0.59 \begin {gather*} \frac {2 \left (b-a \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a \sin (c+d x)\right )}{d e \sqrt {e \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sin[c + d*x])/(e*Cos[c + d*x])^(3/2),x]

[Out]

(2*(b - a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + a*Sin[c + d*x]))/(d*e*Sqrt[e*Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 5.52, size = 119, normalized size = 1.31

method result size
default \(-\frac {2 \left (\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a -2 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{e \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}\) \(119\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sin(d*x+c))/(e*cos(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/e/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)/sin(1/2*d*x+1/2*c)*((sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c
)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a-2*a*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-b*sin(1/2*d*x
+1/2*c))/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))/(e*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

e^(-3/2)*integrate((b*sin(d*x + c) + a)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.10, size = 101, normalized size = 1.11 \begin {gather*} \frac {{\left (-i \, \sqrt {2} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (a \sin \left (d x + c\right ) + b\right )} \sqrt {\cos \left (d x + c\right )}\right )} e^{\left (-\frac {3}{2}\right )}}{d \cos \left (d x + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))/(e*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*a*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) +
 I*sqrt(2)*a*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) +
2*(a*sin(d*x + c) + b)*sqrt(cos(d*x + c)))*e^(-3/2)/(d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b \sin {\left (c + d x \right )}}{\left (e \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))/(e*cos(d*x+c))**(3/2),x)

[Out]

Integral((a + b*sin(c + d*x))/(e*cos(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))/(e*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*sin(d*x + c) + a)*e^(-3/2)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {a+b\,\sin \left (c+d\,x\right )}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sin(c + d*x))/(e*cos(c + d*x))^(3/2),x)

[Out]

int((a + b*sin(c + d*x))/(e*cos(c + d*x))^(3/2), x)

________________________________________________________________________________________